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Abstract

We examine the problem of approximating, in the Frobenimsmsense, a positive, semidefinite symmetric
matrix by a rank-one matrix, with an upper bound on the caldinof its eigenvector. The problem arises in the
decomposition of a covariance matrix into sparse factord,bes wide applications ranging from biology to finance.
We use a modification of the classical variational repredent of the largest eigenvalue of a symmetric matrix,
where cardinality is constrained, and derive a semidefpridgramming based relaxation for our problem. We also
discuss Nesterov's smooth minimization technique appbetie SDP arising in the direct sparse PCA method. The
method has complexit®)(n*+/log(n)/¢), wheren is the size of the underlying covariance matrix, ani$ the
desired absolute accuracy on the optimal value of the pmoble

1 Introduction

Principal component analysis (PCA) is a popular tool fomdatalysis and dimensionality reduction. It has applica-
tions throughout science and engineering. In essence, R1@A linear combinations of the variables (the so-called
principal components) that correspond to directions ofimakvariance in the data. It can be performed via a singular
value decomposition (SVD) of the data matrlx or via an eigenvalue decomposition4fis a covariance matrix.

The importance of PCA is due to several factors. First, bywém directions of maximum variance in the data,
the principal components offer a way to compress the data mihimum information loss. Second, the principal
components are uncorrelated, which can aid with interpogtar subsequent statistical analysis. On the other hand,
PCA has a number of well-documented disadvantages as welhr#cular disadvantage that is our focus here is the
fact that the principal components are usually linear coratidns ofall variables. That is, all weights in the linear
combination (known atoading9, are typically non-zero. In many applications, howeviee toordinate axes have
a physical interpretation; in biology for example, eachsaright correspond to a specific gene. In these cases, the
interpretation of the principal components would be féaiéd if these components involve very few non-zero loagling
(coordinates). Moreover, in certain applications, e.garicial asset trading strategies based on principal coemton
techniques, the sparsity of the loadings has importantemprences, since fewer non-zero loadings imply fewer fixed
transaction costs.

It would thus be of interest to be able to discover “sparsaqipal components”, i.e., sets of sparse vectors
spanning a low-dimensional space that explain most of thamwee present in the data. To achieve this, it is necessary
to sacrifice some of the explained variance and the orthdiggoéthe principal components, albeit hopefully not too
much.

Rotation techniques are often used to improve interpaiati the standard principal components [L]. [2] consid-
ered simple principal components by restricting the logsito take values from a small set of allowable integers, such
as0, 1, and—1. [3] propose an ad hoc way to deal with the problem, wheredhdihgs with small absolute value
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are thresholded to zero. We will call this approach “simpiesholding.” Later, a method called SCoTLASS was
introduced by[[4] to find modified principal components withspible zero loadings. In[5] a new approach, called
sparse PCA (SPCA), was proposed to find modified componetitzeiio loadings, based on the fact that PCA can be
written as a regression-type optimization problem. THsved the application of LASSQ16], a penalization technique
based on thé; norm.

In this paper, we propose a direct approach (called DSPC At ¥ollows) that improves the sparsity of the prin-
cipal components by directly incorporating a sparsityeeiitn in the PCA problem formulation and then relaxing the
resulting optimization problem, yielding a convex optiatibn problem. In particular, we obtain a convex semidedinit
programming (SDP) formulation.

SDP problems can be solved in polynomial time via genergbgse interior-point methodsl[[7, 8], and our current
implementation of DSPCA makes use of these general-purmpesigods. This suffices for an initial empirical study
of the properties of DSPCA and for comparison to the algorgthliscussed above on problems of small to medium
dimensionality. For high-dimensional problems, the gahpurpose methods are not viable and it is necessary to
attempt to exploit special structure in the problem. It suonit that our problem can be expressed as a special type of
saddle-point problem that is well suited to recent spezgdlialgorithms, such as those describedlin [D, 10, 11]. These
algorithms offer a significant reduction in computatiorisleg compared to generic SDP solvers. In the current paper,
however, we restrict ourselves to an investigation of thedyaroperties of DSPCA on problems for which the generic
methods are adequate.

Our paper is structured as follows. In Secfibn 2, we show leosificiently derive a sparse rank-one approximation
of a given matrix using a semidefinite relaxation of the sp&€A problem, and briefly explain how to generalize the
approach to non-square matrices. In Sedilon 3, we derivetaresting robustness interpretation of our technique:, an
in Sectior# we describe how to use this interpretation ireotd decompose a matrix into sparse factors. Seftion 5
outlines different algorithms that can be used to solve tloblpm, while Sectiofll6 presents numerical experiments
comparing our method with existing techniques.

Notation

In this paperS" is the set of symmetric matrices of sizeandA,, the corresponding spectahedron (set of positive
semi-definite matrices with unit trace). We denotelbg vector of ones (with size inferred from context), while
Card(z) denotes the cardinality (number of non-zero elements) a&fctovx. For X € S*, we denote by X || is

the Frobenius norm ok, i.e., | X||r = /Tr(X?2), by A™**(X) the maximum eigenvalue of and by|| X || =
maxi<; j<n | Xi;|, While | X| is the matrix whose elements are the absolute values of éneegits ofX .

2 Sparse eigenvectors

In this section, we derive a semidefinite programming (SER)ation for the problem of approximating a symmetric

matrix by a rank one matrix with an upper bound on the cardinef its eigenvector. We first reformulate this as a

variational problem, we then obtain a lower bound on itsroptivalue via an SDP relaxation (we refer the reader to
[12] or [13] for an overview of semidefinite programming).

2.1 Single factor, A positive semidefinite

Let A € S" be a givem x n positive semidefinite, symmetric matrix ahdbe an integer with < k < n. We consider
the problem:
Di(A) := min |A - 22T p 1
subjectto Card(z) < k, (1)

in the variabler € R™. We can solve instead the following equivalent problem:

P2(A) = min | A= AzaT||%
subjectto ||z]l2=1, A >0,
Card(z) < k,



in the variabler € R™ and\ € R. Minimizing over )\, we obtain:
03(4) = A% - v (A),

where
vp(4) := max 2T Ax
subjectto |jz|2 =1 (2)
Card(z) < k.
To compute a semidefinite relaxation of this program (sekdL{L3], for example), we rewritd]2) as:
vp(4) := max Tr(AX)
subjectto Tr(X)=1 3)
Card(X) < k2

X >0, Rank(X) =1,

in the symmetric, matrix variabl& € S". Indeed, if X is a solution to the above problem, théh > 0 and
Rank(X) = 1 means that we hav& = zz’, andTr(X) = 1 implies that||z|| = 1. Finally, if X = x2T then
Card(X) < k? is equivalent tadCard(z) < k.

Naturally, problem[B) is still non-convex and very difficth solve, due to the rank and cardinality constraints.
Since for everyu € R?, Card(u) = ¢ implies |Jull; < ./q|lull2, we can replace the non-convex constraint
Card(X) < k2, by a weaker but convex ond:”| X |1 < k, where we have exploited the property thaf || » =
VaTz = 1whenX = zz” andTr(X) = 1. If we also drop the rank constraint, we can form a relaxatio@) and

@) as:

7k(A) := max Tr(AX)
subjectto Tr(X)=1 @)
17X11 <k
X =0,

which is a semidefinite program (SDP) in the variallec S*, wherek is an integer parameter controlling the sparsity
of the solution. The optimal value of this program will be gper bound on the optimal valug(a) of the variational
program in [2), hence it gives a lower bound on the optimaledl, (A) of the original problem[{1). Finally, the
optimal solutionX will not always be of rank one but we can truncate it and kedp imdominant eigenvectar as

an approximate solution to the original probldth (1). In ®ed# we show that in practice the solutidhto (@) tends

to have a rank very close to one, and that its dominant eigtowis indeed sparse.

2.2 Extension to the non-square case
A similar reasoning involves a non-squarex n matrix A, and the problem

min A —uwoT||F
subjectto Card(u) < k
Card(v) < ko,

in the variablegu, v) € R™ x R™ wherek; < m, ko < n are fixed. As before, we can reduce the problem to

max ul Av
subjectto |jullz =|v|lz2 =1
Card(u) < k1, Card(v) < ko,

which can in turn be relaxed to
max ’I‘I‘(ATXlg)

subjectto X > 0, Tr(Xy) =1
171 X511 <k, i=1,2
17| X12]1 < Vkiks,

in the variableX € S™™ with blocks X;; for i,j = 1,2. We can consider several variations on this, such as
constrainingCard(u) + Card(v) = Card(u, v).



3 Arobustness interpretation

In this section, we show that problefd (4) can be interpreted aobust formulation of the maximum eigenvalue
problem, with additive, component-wise uncertainty inmfegtrix A. We again assumé to be symmetric and positive
semidefinite.

In the previous section, we considered a cardinality-gamstd variational formulation of the maximum eigen-
value problem:

vp(4) := max 2T Az
subjectto ||z|2 =1
Card(z) < k.

Here we look at a small variation where we penalize the calilyrand solve:

max 2T Az — p Card?(x)
subjectto ||zl =1,
in the variabler € R™, where the parameter> 0 controls the size of the penalty. This problem is again nomvex
and very difficult to solve. As in the last section, we can fah@ equivalent program:
max Tr(AX) — pCard(X)
subjectto Tr(X)=1
X >0, Rank(X) =1,

in the variableX € S". Again, we get a relaxation of this program by forming:

max Tr(AX) — p17|X]|1
subjectto Tr(X)=1 (5)
X =0,

which is a semidefinite program in the variabfee S", wherep > 0 controls the penalty size. We can rewrite this
last problem as:
in Tr(X(A+U
s 05, T AT ©)
and we get a dual t@5) as:
min AR (A 4+ U)
subjectto |U;;| <p, 4,j=1,...,n,

(@)

which is a maximum eigenvalue problem with variable= R"*". This gives a natural robustness interpretation to
the relaxation in[{): it corresponds to a worst-case marireigenvalue computation, with component-wise bounded
noise of intensity on the matrix coefficients.

Let us remark that we can easily move from the constrainedttation in [4) to the penalized form il (5). Suppose
that we have solved the constrained problEm (4) for a cetdaget cardinalityk:

max Tr(AX)

subjectto Tr(X) =1
171 X1 <k
X t 07

then this problem is equivalent to the penalized problem:

max Tr(AX) — p* 17X 1
subjectto Tr(X)=1
X =0,

if we set the noise level* to be equal to the optimal Lagrange multiplier associatet thie constraint”| X |1 < k
in the constrained cardinality prograld (4). This meanswetan directly compute the noise leyefrom the value
of k and the dual solution to the constrained prograrfllin (4).



4 Sparse decomposition

Here, we use the results obtained in the previous two sextiiotlescribe a sparse equivalent to the PCA decomposition
technique. Suppose that we start with a matrixe S", our objective is to decompose it in factors with target sgar
k. We solve the relaxed problem id (4):

max Tr(A; X)

subjectto Tr(X) =1
17X1 <k
X =0,

to get a solutionX, and truncate it to keep only the dominant (sparse) eigeorec. Finally, we deflated; to obtain
A2 = Al — (folxl)xlxrf,

and iterate to obtain further components.

The question is now: When do we stop the decomposition? IP@w case, the decomposition stops naturally
afterRank(A) factors have been found, singg;ank(4)+1 is then equal to zero. In the case of the sparse decompo-
sition, we have no guarantee that this will happen. Howdlierrobustness interpretation gives us a natural stopping
criterion: if all the coefficients in4;| are smaller than the noise leygl (computed in the last section) then we must
stop since the matrix is essentially indistinguishablerfizero. So, even though we have no guarantee that the algo-
rithm will terminate with a zero matrix, the decompositioillin practice terminate as soon as the coefficientslin
become undistinguishable from the noise.

5 Algorithms

For problems of moderate size, our SDP can be solved effigiesing solvers such as SEDUMII[7] or SDPT3
[B]. For larger-scale problems, we need to resort to othgesyof algorithms for convex optimization. Of special
interest are the recently-developed algorithms duel {0J911]. These are first-order methods specialized to prablem
having a specific saddle-point structure. It turns out thatproblem, when expressed in the saddle-point fddm (6),
falls precisely into this class of algorithms. Judged frdwa tesults presented in_10], in the closely related cortext
computing the Lovascz capacity of a graph, the theoretmalpdexity, as well as practical performance, of the method
as applied to[{]6) should exhibit very significant improvemsaver the general-purpose interior-point algorithms for
SDP. Of course, nothing comes without a price: fimed problem size, the first-order methods mentioned above
converge inO(1/¢), wheree is the required accuracy on the optimal value, while intepioint methods converge in
O(log(1/€)). In what follows, we adapt the algorithm inl [9] to our parfeuconstrained eigenvalue problem.

Given an x n positive semi-definite symmetric matrik, we consider the problem

$(A) = max Tr(AU) —17|U|1 : U =0, TrU = 1. (8)

By duality we have the representation

d(A) min = Apax(4 + X)

[ XNleo<1

= min max (U, A+ X)
[Xlloo<1 UEA,

g, 1)

where
le{XESn : |XU|§17 1§2,]§n},

F(X) = Amax(A + X) = max (AX,U) — o(U),

Q={Ue8" : TrU =1}, A=1,, ¢(U)=—Tr(AU).



Prox functions and related parameters. To Q; andQ» we associate norms and so-called prox-functions.
To Q,, we associate the Frobenius normRA*™, and a prox-function defined farc Q; by

1
dy(X) = 5XTX.

With this choice, the centexX, of Q;, defined as

Xo = arg )géiél] di(X),

is Xo = 0, and satisfied; (X,) = 0. Moreover, we have

Dy = dy(X) =n?/2.
1= max 1(X) =n7/

Furthermore, the functiod, is strictly convex on its domain, with convexity parametéthwespect to the Frobenius

normo; = 1.
Next, for O, we use the dual of the standard matrix norm (dengteff;), and a prox-function

da(U) = Tr(UlogU) + log(n),

wherelog refers to thematrix (and not componentwise) logarithm. The center of the@gets Xy = n~'I,,, and

d2(Xo) = 0. We have

do(U) < logn := Ds.
Joax 2(U) < logn 2

The convexity parameter @, on its domain with respect 1- ||5, is bounded below by, = 1/2. (This non-trivial

result is proved in[1110].)
Next we compute thél, 2) norm of the operatod introduced above, which is defined as

1412 = max{AX,U) - | X]r=1,|Ul;=1
= max | X||z : [ X]|F <1
= 1L
To summarize, the parameters set above are
Dy =n?/2, o1 =1, Dy=1log(n), o2 =1/2, ||All12=1.

Idea of the method. The method first sets a regularization parameter

€

N:2—l)2-

The method will produce astsuboptimal optimal value and corresponding sub-optirkiteon in a number of steps

not exceeding
/DDy 1
N =4||A|12 i

The non-smooth objective of the original problem is repthwith

i X
2g, 1+

wheref,, is the penalized function involving the prox-functidst

fu(X) = max (AX, U) = §(U) — pda(U).



Note that in our case, the functiof), and its gradient are readily computed; we will detail thigpstater. The
above function turns out to be a smooth uniform approxinmati) everywhere, with maximal errqtDy = ¢/2.
Furthermore, the functiof, is Lipschitz-continuous, with Lipschitz constant given by

_ Dy Al

L:=
209 €

In our specific case, the functigfy is given by
fu(X) = plog (Trexp((A+ X)/u)) — plogn,

which can be seen as a smooth approximation to the fun¢(idh = \,.x(A + X) that, for a specific choice qf,
enjoys nice uniform approximation properties with respgeat.

A specific gradient algorithm for smooth convex minimizatis then applied to the above smooth convex function
fu. The method requires the computation of values of

. 1
To,(X) i= min (V£,(X).Y = X) + 5 LIX - Y[},

whereX € Q; is given. As seen later, in our case, the above problem eskgnaimounts to projecting on a box, and
is easy.
The algorithm. Once the regularization parameteis set, the algorithm proceeds as follows.
For k£ > 0do
1. Computef,(X) andV f,(Xy).
2. FIndYk = TQl (Xk)

w

. FindZ; = argminx {Adl(X) + Y0 LV (X)X — X)) X € Ql}.

o1

4. SetXy, = 25 7; + Y.

Note that the algorithm generates feasible points. Let wg detail the application of these steps to our specific
problem. In what follows, the iteration couhts fixed and we denot&;, by X.

Step 1. The most expensive step in the algorithm is the first, namefyputing functionf,,’s values and gradient.
ForZ = A + X afixedn x n symmetric matrix, the problem boils down to computing

u*(2) i= arg max (2,U) — pdy(U) ©)

associated optimal valug,(X). It turns out that this problem has a very simple solutiord anly requires to form
an eigenvalue decomposition f@r = A + X. The gradient of the objective function with respect4ads set to the
maximizeru*(Z) itself, so the gradient with respectis V f,(X) = u* (4 + X).
To computeu*(Z), form an eigenvalue decomposition fgr z = VDVT, with D = diag(d). Then set, for
t=1,...,n
di_dmax
exp(—t—max
i = ( de_d ) , dmax := maxd;.
3, exp(L=tnas ) j
(In the aboved,,., is used to prevent dealing with big numbers.) Thengét) = VHVT, with H = diag(h). The
corresponding function value is given by

fu(X) = plog(Trexp((A+ X)/n)) = plog (Z eXp(%)) — plogmn,
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which can be reliably computed as before, as
= di - dmax
fu(X) = dmax + plog ZGXP(T) — prlogn.
i=1
Step 2. This step involves a problem of the form
. 1
To,(X) = arg min (Vf,(X),Y)+ 3LIX = Y[}

whereX is given. The above problem can be reduced to a projection:

n Y-V 10
arg uin | I (10)

whereV = X — L~'Vf,(X) is given. The above problem has solution given by

Yij = sgn(Vi;) - min(|V[, 1), 1 <4,5 <n.
Step 3. The third step involves solving a problem of the same fornfll&$, {vith

k.
o1 i1+ 1
LN VLX),
L P 2 vfl( )

V =

Convergence criterion. We can stop the algorithm when the gap
Mmax (A + X3) — Tr AU + 1T |UL |1 < €,

whereU, = u*((A + Xi)/n) is our current estimate of the dual variable (the functidris defined by[(P)). The
above gap is necessarily non-negative, since BgtndU;, are feasible for the primal and dual problem, respectively.
Nesterov advises to check this criterion only periodicdfly example every00 iterations.

Complexity. Since each iteration of the algorithm requit@én?) flops, the predicted worst-case complexity to
achieve an objective with absolute accuracy less than

[D1Dy; O(n?
1,2 01022 . K ) = O(n4 V1ogn/e).

€

4|4

6 Numerical results

In this section, we illustrate the effectiveness of the psgul approach both on an artificial and a real-life data set. W
compare with the other approaches mentioned in the inttadud®CA, PCA with simple thresholding, SCOoTLASS
and SPCA. The results show that our approach can achieve sparsity in the principal components than SPCA
does, while explaining as much variance. The other appesacdin explain some more variance, but result in principal
components that are far from sparse. We begin by a simple@raliustrating the link betweeh and the cardinality

of the solution.

6.1 Controlling sparsity with %

Here, we illustrate on a simple example how the sparsity®&tiution to our relaxation evolves avaries froml to
n. We generate &0 x 10 matrix U with uniformly distributed coefficients ifd, 1]. We letv be a sparse vector with:

v=1(1,0,1,0,1,0,1,0,1,0).



We then form a test matrid = UTU + ovv®’, whereo is a signal-to-noise ratio equal 16 in our case. We sample
50 different matricesA using this technique. For eagthetweenl and10 and each4, we solve the following SDP:

max Tr(AX)

subjectto Tr(X) =1
17 X)1 <k
X =0,

we then extract the first eigenvector of the solutifnand record its cardinality. In Figufd 1, we show the mean
cardinality (and standard deviation) as a functiorkofWe observe that + 1 is actually a good predictor of the
cardinality, especially wheh + 1 is close to the actual cardinality {n this case).

12

101

©
T

cardinality

Figure 1: Cardinality versus.

6.2 Artificial data

We consider the simulation example proposed by [5]. In th@wple, three hidden factors are created:

Vi ~ N(0,290), Va ~ N(0,300), Vi =—0.3Vi +0.925V5 +¢, e~ N(0,300) (11)

with V1, V5 ande independent. Afterwards, 10 observed variables are gexteaa follows:
Xi=Vj+e, & ~N(O,1),

withj =1fori=1,2,3,4,j =2fori=5,6,7,8andj = 3fori =9,10 and{e{} independentfoj = 1,2,3,i =
1,...,10. Instead of sampling data from this model and computing apical covariance matrix of X1, . .., X19),
we use the exact covariance matrix to compute principal @mapts using the different approaches.

Since the three underlying factors have about the samenearjand the first two are associated with 4 variables
while the last one is only associated with 2 variablés,and V5 are almost equally important, and they are both
significantly more important thaW;. This, together with the fact that the first 2 principal comgnots explain more
than99% of the total variance, suggests that considering two sparsar combinations of the original variables
should be sufficient to explain most of the variance in datapgad from this model. This is also discussed By [5].
The ideal solution would thus be to only use the varialblés, X, X5, X4) for the first sparse principal component,
to recover the factov;, and only( X5, X¢, X7, Xg) for the second sparse principal component to recbyer



Using the true covariance matrix and the oracle knowledggttte ideal sparsity is 4.1[5] performed SPCA (with
A = 0). We carry out our algorithm witlk = 4. The results are reported in Tallle 1, together with resolts f
PCA, simple thresholding and SCoTLASS=£ 2). Notice that SPCA, DSPCA and SCoTLASS all find the correct
sparse principal components, while simple thresholdietggiinferior performance. The latter wrongly includes the
variablesXy and X, to explain most variance (probably it gets misled by the ldgirelation betweei; andVs),
even more, it assigns higher loadingsXg and X, than to one of the variablds{;, X4, X7, X3) that are clearly
more important. Simple thresholding correctly identifies $econd sparse principal component, probably bedguse
has a lower correlation withs. Simple thresholding also explains a bit less variance thawmther methods.

6.3 Pit props data

The pit props data (consisting of 180 observations and 13uned variables) was introduced byl[15] and has become
a standard example of the potential difficulty in interprgtprincipal components[][4] applied SCoTLASS to this
problem and[]b] used their SPCA approach, both with the gbabtaining sparse principal components that can
better be interpreted than those of PCA. SPCA performsbistae SCoTLASS: it identifies principal components
with respectively 7, 4, 4, 1, 1, and 1 non-zero loadings, asvehin Tabld2. As shown ir[]5], this is much sparser
than the modified principal components by SCoTCLASS, whilglaning nearly the same variancg (8% versus
78.2% for the 6 first principal components). Also, simple threslig of PCA, with a number of non-zero loadings
that matches the result of SPCA, does worse than SPCA in @rmglained variance.

Following this previous work, we also consider the first Gnpipal components. We try to identify principal
components that are sparser than the best result of thisopsework, i.e., SPCA, but explain the same variance.
Therefore, we choose values ferof 5, 2, 2, 1, 1, 1 (two less than those of the SPCA results tegabove, but
no less than 1). Figuld 2 shows the cumulative number of moa{padings and the cumulative explained variance
(measuring the variance in the subspace spanned by thédiggnvectors). The results for DSPCA are plotted with
a red line and those for SPCA with a blue line. The cumulatiymaned variance for normal PCA is depicted with
a black line. It can be seen that our approach is able to expkarly the same variance as the SPCA method, while
clearly reducing the number of non-zero loadings for the Grprincipal components. Adjusting the firstfrom 5
to 6 (relaxing the sparsity), we obtain the results plottéith & red dash-dot line: still better in sparsity, but with a
cumulative explained variance that is fully competitivét&PCA. Moreover, as in the SPCA approach, the important
variables associated with the 6 principal components doowetlap, which leads to a clearer interpretation. Table
B shows the first three corresponding principal componemtthe different approaches (DSPCAwS5 far = 5 and
DSPCAw6 fork; = 6).

7 Conclusion

The semidefinite relaxation of the sparse principal compbaealysis problem proposed here appears to significantly
improve the solution’s sparsity, while explaining the saragance as previously proposed methods in the examples
detailed above. The algorithms we used here handle modgzatproblems efficiently. We are currently working on
large-scale extensions using first-order techniques.
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X1 Xa X3 X4 X5 X6 X7 Xs X9 X110 explained variance
PCA,PC1| .116 116 .116 116 -395 -395 -395 -395 -401 -401 60.0%
PCA,PC2 | -478 -.478 -.478 -478 -145 -145 -145 -145 .010 .010 39.6%
ST,PC1 0 0 0 0 0 0 -497 -497 -503 -503 38.8%
ST, PC2 -5 -5 -5 -5 0 0 0 0 0 0 38.6%
other, PC1 0 0 0 0 5 5 5 5 0 0 40.9%
other, PC2 5 .5 .5 5 0 0 0 0 0 0 39.5%

Table 1: Loadings and explained variance for first two ppatcomponents, for the artificial example. 'ST' is the

simple thresholding method, 'other’ is all the other metsicBPCA, DSPCA and SCoTLASS.
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Figure 2: Cumulative cardinality and cumulative explaimadance for SPCA and DSPCA as a function of the number
of principal components: black line for normal PCA, blue &?CA and red for DSPCA (full fok; = 5 and dash-dot

for k1 = 6).
topdiam length moist testsg ovensg ringtop  ringbud  bowmaxowdist whorls clear knots  diaknot
SPCA, PC1 - 477 -476 0 0 177 0 -.250 -.344 -.416 -.400 0 0 0
SPCA, PC2 0 0 .785 .620 0 0 0 -.021 0 0 0 .013 0
SPCA, PC3 0 0 0 0 .640 .589 492 0 0 0 0 0 -.015
DSPCAwWS, PC1 -.560 -.583 0 0 0 0 -.263 -.099 -371 -.362 0 0 0
DSPCAwWS5, PC2 0 0 .707 707 0 0 0 0 0 0 0 0 0
DSPCAWS5, PC3 0 0 0 0 0 -.793 -.610 0 0 0 0 0 .012
DSPCAwS6, PC1 -.491 -.507 0 0 0 -.067 -.357 -.234 -.387 -.409 0 0 0
DSPCAwW6, PC2 0 0 707 707 0 0 0 0 0 0 0 0 0
DSPCAwWS6, PC3 0 0 0 0 0 -.873 -.484 0 0 0 0 0 .057

Table 2: Loadings for first three principal components, far teal-life example.

the result of our technique witky equal to 5 (resp. 6).
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DSPCAWS5 (resp. DSPCAw6) shows
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